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The structural properties of In2Se3 precursor thin films grown by chemical spray pyrolysis (CSP) and physical
vapor deposition (PVD) methods were compared. This is to investigate the feasibility to substitute PVD process
of CuInSe2 (CISe) films by CSP films as precursor layer, thus decreasing the production cost by increasing
material-utilization efficiency. Both films of 1 μm thickness were deposited at the same substrate temperature
of 380 °C. X-ray diffraction and Raman spectra confirm the formation of γ-In2Se3 crystalline phase for both
films. The PVD and CSP films exhibited (110) and (006) preferred orientations, respectively. The PVD films
showed a smaller full width at half maximum value (0.09°) compared with CSP layers (0.1°). Films with the
same crystalline phase but with different orientations are normally used in the preparation of high quality CISe
films by 3-stage process. Scanning electron microscope cross-section images showed an important difference
in grain size with well-defined larger grains of size 1–2 μm in the PVD films as compared to CSP layers
(600 nm). Another important characteristic that differentiates the two precursor films is the oxygen contamina-
tion. X-ray photoelectron spectroscopy showed the presence of oxygen in CSP films. The oxygen atoms could be
bonded to indium by replacing Se vacancies, which are formed during CSP deposition. Taking account of the ob-
tained results, such CSP films can be used as precursor layer in a PVD process in order to produce CISe absorber
films.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

CuInSe2 (CISe) and Cu(In,Ga)Se2 (CIGSe)materials are widely inves-
tigated as absorber layers in thin film solar cells. This is mainly due to
their high absorption coefficient (10−5 cm−1), suitable direct band
gap (~1–1.7 eV) and potential low-cost production [1]. Furthermore,
CISe and CIGSe solar cells exhibit very good outdoor stability and radia-
tion hardness [2]. In particular, CIGSe thin film solar cells have achieved
efficiencies of 20.8% [3]. This efficiency surpasses the best achieved
results of multicrystalline silicon and CdTe solar cells [4]. Cu(In,Ga)Se2
films can be deposited by vacuum and non-vacuum methods such as
physical vapor deposition (PVD) (e.g. co-evaporation) [5,6], selenization
of metal precursor films [7], electrodeposition [8], particulate process
(e.g. spin coating, doctor blade) [9–12], and chemical spray pyrolysis
(CSP) [13–16].

Non-vacuum deposition methods of CISe have shown significantly
lower capital expenditure, reduced material cost and produce devices
Engineering (SEES), Cinvestav-
+52 55 57 47 38 00x2036.
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with considerable efficiencies [14,17,18]. Amongst these methods, the
chemical spray pyrolysis deposition has the advantages of low cost
equipment, easy scale-up, simple atomization process and temperature
control. This deposition is based on the pyrolytic decomposition of small
droplets of chloride-based solution sprayed onto a heated substrate
under atmospheric conditions [19]. The PVD by co-evaporationmethod
gives the best solar cell efficiencies but poses cost and technological
barriers. In this technique, vapors of two differentmaterials are generated
simultaneously. These two vapors condense together to form an alloy or
a compound. Amongst the different co-evaporation processes, the
so-called “3-stage” is essential in obtaining high quality CISe films
[20]. This process basically consists of Stage-1: growth of a 1 μm
thick In2Se3 thin film at low temperature (300–400 °C), Stage-2: these
layers are used as precursor during the co-evaporation of copper and
selenium,where a Cu-richfilm is yielded, Stage-3: indiumand selenium
are co-evaporated and the film evolves gradually to Cu-poor until the
final composition is reached [21]. The In2Se3 precursor films used in
this process are very important because of i) their direct relationship
with the final CISe/CIGSe absorber material quality [22] and ii) its
deposition represents around 50% of the total deposition material in a
standard 3-stage process [6]. The In2Se3 is a III2–VI3 semiconductor
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Fig. 1. XRD pattern of the In2Se3 film grown by PVD.
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compound that exhibits several phases and crystalline structures
(e.g. defected hexagonal, cubic) dependingon thedeposition conditions.

In this research work, we investigated the feasibility of obtaining
CISefilmsby PVD (e.g. co-evaporation 3-stage) using CSPfilm as precur-
sor layer by focusing on the structural properties of the In2Se3 precursor
films obtained fromCSP and PVD. This approach could lead to decreased
CISe film production cost by increasing the material-utilization
efficiency.

2. Experimental details

2.1. Deposition of In2Se3 thin films

In2Se3 thin films were deposited by PVD and CSP in order to study
the difference in the structural properties of the films. A standard
3-stage co-evaporation process uses 1 μm thick In2Se3 precursor films
deposited at 300–400 °C in order to obtain high quality CISe absorbers
[6,22]. For this reason, both PVD and CSP In2Se3 layers used in this
work were deposited at 380 °C with 1 μm thickness.

2.1.1. Chemical spray pyrolysis process
The In2Se3 layers were deposited by CSP on molybdenum coated

soda lime glass (SLG) substrates. The CSP films were grown on amolten
tin bath at 380 °C. The substrate temperature was monitored by a
thermocouple located at the backside of the glass substrate. The details
of the CSP setup are described elsewhere [16]. The precursor solutions
contain concentrations of 0.0015 M for InCl3 and 0.0055 M for N-N-
dimethyl-selenourea (DMSeU) in a 20% volume ethanol aqueous solu-
tion. DMSeUwas provided in excess of stoichiometry due to the volatile
nature of Se at the deposition temperature. The desired pH (4–5) of the
solution was achieved by addition of HCl. The total volume of the solu-
tion sprayed was 800 ml with a spray rate of 6.5 ml/min with nitrogen
as a carrier gas whose flow rate was 1.5 l/min. These parameters yield
films of about 1 μm thickness.

2.1.2. Physical vapor deposition process
The In2Se3 films of 1 μm thickness were deposited onto Mo/SLG

substrates. The elementalfluxes of In and Sewere controlled by changing
the temperatures of the evaporation sources. A quartz oscillator was
used in order to control the evaporation rates and thickness of the
film. During the deposition, the substrates were heated by an infrared
source. The temperature was monitored by a thermocouple located
at the backside of the substrate. The deposition were carried out at a
substrate temperature of 380 °C under high vacuum (1 × 10−4 Pa).
An effusion cell evaporation source for In and pyrex crucible for Se
were used. During the evaporation process, the temperature of In and
Se sources were kept at 1010 °C and 285 °C, respectively.

2.2. Thin film characterization

The morphology of the films was observed by scanning electron
microscope (SEM)-model JEOL 7600F using an acceleration voltage of
5 kV with a magnification of ×20,000. The average composition of the
films was measured by electron dispersive spectroscopy (EDS) using a
SEM equipped with an energy dispersive spectrometer SDD SAMx
with a resolution of 129 eV, employing a beam current of 0.3 nA and
an acceleration voltage of 20 kV. The crystalline quality and orientation
were characterized by X-ray diffraction (XRD) using a Cu-Kα radiation
(1.541 Å) with a θ/2θ configuration and stepsize of 0.01°. Raman
measurements were performed with a Jobin–Yvon T64000 using an
argon laser (λ = 514.5 nm) with a probe area around 1 μm2 for an
acquisition time of 5 min. The surface analyses were performed by
X-ray photoemission spectroscopy (XPS) in a Kratos Axis Nova with a
monochromatic Al K radiation (1486.6 eV) and 160 eV pass energy
with an energy step of 0.5 eV. The sputtering was performed for 60 s
with an Ar ion beam and beam energy of 300 eV. The C1s signal from
adventitious carbon with a binding energy EB = 284.6 eV was used for
energy referencing. The peak fit analysis was performed using the
CasaXPS software where a linear background was subtracted from the
spectra. The spectra were fitted by peaks with a Gauss (60%)–Lorentz
(40%) profiles.

3. Results and discussion

3.1. In2Se3 thin films grown by PVD

The PVD films were studied by XRD in order to determine their
crystalline properties. Fig. 1 shows the diffractogram of PVD-In2Se3
thin film grown on Mo/SLG. The films exhibited diffraction peaks
corresponding to polycrystalline γ-In2Se3. The films have shown (110)
orientation with strong (300) and weak (006) lines. This result is in
good agreement with the XRD pattern of γ-In2Se3 (JCPDS 40-1407)
with hexagonal structure [23]. Peaks around 38° and 48° are related to
β-In2Se3 phase. The peak around 19° does not match with InSe or
β-In2Se3 phases. The full width half maximum (FWHM) of the (110),
(006) and (300) peaks were 0.07, 0.09 and 0.10°, respectively.

The Raman spectrum of the PVD film is shown in Fig. 2a. The main
mode located at 149.4 cm−1 is related to the formation of a stable poly-
crystalline γ-In2Se3 phase [24]. The Raman modes located around 178
and 203 cm−1 are related to both γ-In2Se3 [24] and α-In2Se3 [25]. The
vibrational modes located at around 149 and 227 cm−1 appear at
the same wave number reported by Wanatabe and Marsilliac et al.
[26,27]. This result is consistentwith theXRDdiffractionmeasurements.

The surfacemorphology and cross-section SEM images of PVD In2Se3
films are shown in Fig. 3a,b. Surface morphology shows lamellar struc-
tures with different grain sizes and also hexagonal grains with 1–2 μm
width. These hexagonal grains are related to the growth of the films
with (001) orientation. The cross-section image (Fig. 3a) exhibited
densely packed columnar structure (∼0.8–1 μm). The observed
morphologies were attributed to the high surface mobility of adatoms
impinging on the surface of the substrate during nucleation stage.
The relative chemical composition of the PVD-In2Se3 film without con-
sidering the oxygen content is shown in Table 1.

The surface of the PVD-In2Se3 filmswas studied by XPS. Fig. 4 shows
the O1s core level spectra recorded from un-clean and ion sputtered
surface of PVD films. The O1s peak obtained from un-clean surface



Fig. 2. Raman spectroscopy of the In2Se3 film grown by PVD (a) and CSP (b) techniques.

Fig. 3. SEM images of the In2Se3 film grown
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could be separated into at least two sub-bands located at 531.28 and
529.76 eV. The peak at higher binding energy (BE) is characteristic of
surface contaminated by oxygen from air. The peak at lower BE could
be corresponding to the oxygen bonded to a metal [28]. After ion
sputtering almost all the O1s peak signal is lost and the remaining peak
is situated at 529.9 eV, corresponding to a portion of oxygen content
still bonded to the metal.
3.2. In2Se3 thin films grown by CSP

Fig. 5 shows the XRD of the CSP-In2Se3 thin film grown on Mo/SLG.
Similar to PVD films, the CSP film exhibited diffraction peaks related
to polycrystalline γ-In2Se3 phase. This is in good agreement with the
XRDpattern ofγ-In2Se3 (JCPDS 40-1407)with hexagonal structure [23].
Contrary to the (110)-oriented PVD films, the CSP film exhibited (006)
orientation with weak (110) and (300) lines. In results reported by
Mise et al. [22] it is observed that Cu(In,Ga)Se2 films with same (112)
orientation are obtained by using a (110) or (006)-oriented In2Se3 pre-
cursor films. It is known that during the CSP deposition, the substrate
temperature of the front surface is lower (15–20 °C) than the back of
the substrate where the thermocouple is located [29]. This decrease is
due to the difference in temperature of the sprayed precursor solution
(15–25 °C) and the substrate temperature (380 °C). Thus, the substrate
temperature during CSP deposition is lower than 380 °C. Thus, one
reason for the change in orientation could be the lower growth temper-
ature used in the CSP deposition as compared to the PVD.Mise et al. [22]
have reported a similar behavior of (In,Ga)2Se3 films. The difference
in temperature is also present in the CVD process but, given that the
precursor materials reaching the substrate are evaporated at relative
high temperatures (1010 °C and 285 °C), the difference is less than in
CSP deposition. Another reason for the (006)-dominant peak obtained
by CSP film could be the formation of a Se-deficient In2Se3 phase. The
chemical composition of the CSP-In2Se3 layer is shown in Table 1. The
composition of both PVD and CSP films is slightly different. The Se/In
ratio is observed to be lower in the CSP deposited films. This could be
related to the re-evaporation of Se from the hot substrate in the open-
air atmosphere. Thus, it is possible to assume the formation of more
Se vacancies in the CSP films. These results are in good agreement
by PVD (a,b) and CSP (c,d) techniques.



Table 1
Composition analysis of PVD and CSP In2Se3 thin films and the respective Se/In relative
ratio without considering the oxygen content.

Sample In (at.%) Se (at.%) Se/In

PVD-In2Se3 42.91 (±1.08) 57.08 (±0.66) 1.33
CSP-In2Se3 44.44 (±1.28) 55.57 (±0.56) 1.25

Fig. 5. XRD pattern of the In2Se3 film grown by CSP deposition.
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with the XRD, SEM and Raman spectroscopy of γ-In2Se3 films with a
(006)-dominant peak. A similar trend has been reported by Ishizuka
et al. [30]. There is no clear evidence of β-In2Se3 phase or oxide
(e.g. In2O3) formation. The FWHM of (110), (006) and (300) peaks
were 0.09, 0.10 and 0.15°, respectively. The smaller FWHM value of
PVD in relation to CSP layers corresponds to a better crystalline quality
of the former.

The γ-In2Se3 structure was also identified by Raman spectra
(Fig. 2b). The strong vibrational modes located around 150 and
227 cm−1 are related to γ-In2Se3 phase [24]. The Raman mode located
around 203 cm−1 is related to both γ-In2Se3 [24] and β-In2Se3 [25]. It
is possible to observe that the Raman spectra of PVD and CSP films
have the same vibrational modes related to γ-In2Se3 phase, indicating
the similarity in their structure. The structure of the In2Se3, which
belongs to the A2

IIIB3VI series of compounds based on tetrahedral atomic
coordination with one third of the cation sites empty. The observed
vibrational modes are related to the γ-In2Se3 phase distorted wurtzite-
like structure in which half of In atoms are tetrahedrally coordinated
and the remaining half are pentagonally coordinated in a bipyramid
form and the Se atoms are three-fold coordinated [23].

Fig. 3c,d shows the SEM images of the CSP-In2Se3 films deposited on
Mo/SLG. Fig. 3d shows a granular surface morphology with different
grain sizes (60–600 nm). This morphology is related to the growth of
In2Se3 films with (006)-dominant orientation. The cross-section image
of CSP film (Fig. 3c) exhibited a uniform layer with smaller grains
(60–600 nm) as compared to PVD layer. Hence, the density of grain
boundaries (GBs) is higher in the CSP film. Considering a three-stage
CISe deposition process, based on Cu-poor/Cu-rich/Cu-poor transition,
a more defected In2Se3 film promotes higher grain sizes of the final
layer through the reduction of density of defects (i.e. reduction of GBs)
[31]. Thus, it could be expected that in a three-stage growth process
involving the two CSP (first step) and PVD (second and third step) tech-
niques, a higher density of GBs in the CSP-In2Se3 film results in effective
grain growth of the final absorber layer.

The XPS results are shown in Fig. 6. Once again, the un-clean surface
exhibited an O1s spectrum that consists of at least two sub-bands, one
related to surface contamination (531.04 eV) and another oxygen bonded
tometal (529.34 eV). After cleaning the surface, XPS shows peaks related
to oxygen bonded to a metal [28]. From these results, it is possible to
Fig. 4. XPS of the In2Se3 film grown by PVD, before (a) and after etching (b).
observe that the peak related to oxygen is higher in CSP films compared
with PVD layers. Oxygen in the CSP film is likely replacing Se and there-
by bonding to In to form In2O3. The presence of oxygen in the films can
have different effects such as: i) passivation of surface dangling bonds
related to Se vacancies (e.g. In2O3), and ii) formation of surface contam-
ination (e.g. OH bonds). Barreau et al. [32] reported the disruption of
crystallite growth of In2S3 thin films in the presence of OH bonds. The
passivation of surface dangling bonds through the formation of In2O3

takes place on the interface states at the P–N junction of a solar cell or
on grain boundaries in the bulk of the film. Passivation of GBs in the
bulk is beneficial to the solar cell performance by reducing the number
of recombination centers [33]. Passivation at the junction could be det-
rimental for the devices due to the enhanced interface recombination
[34]. To avoid negative effects of oxygen passivation on the electrical
properties of devices, the CSP-deposited In2Se3 precursor films could
be subjected to different surface chemical treatments with NH3 [35],
HCl [36], etc, prior to the formation of CISe or CIGSe absorbers layers.
Fig. 6. XPS of the In2Se3 film grown by CSP, before (a) and after etching (b).
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4. Conclusion

In this study, we showed that In2Se3 precursor thin films with
similar structural properties and good uniformity could be deposited
by CSP and PVD techniques. XRD and Raman spectroscopy showed
that both films have same γ-In2Se3 crystalline phase. The PVD and CSP
films exhibited a (110) and (006) preferred orientation, respectively.
Both orientations, however, are related with CISe/CIGSe films with
the same (112) preferential orientation. SEM images showed smaller
grains in the CSP films compared to PVD layers. In a three-stage process
involving the two CSP (first step) and PVD (second and third step) tech-
niques, a higher number of GBs in the CSP-In2Se3 film could result in an
effective grain growth of the final absorber layer. Another important
characteristic that differentiates both precursor films is the oxygen con-
tamination, which could be beneficial or detrimental to the electrical
properties of the CISe based solar cell depending on its location. A
chemical treatment of CSP In2Se3 films could be necessary in order to
avoid detrimental effects of oxygen. Taking account of the obtained
results, we suggest that the CSP films could be considered as precursor
layer in a co-evaporation 3-stage process in order to produce CISe
absorber films.
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